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The expression of a biparabolic model to represent the dielectric relaxation data of polymers is combined 
with a statistical method (the LEVM6 program) to provide a reasonable estimation of the parameters of this 
model. The graphical and multi-response methods are compared by using data for poly(2,6-dimethylphenyl 
methacrylate) (PDMP). The statistical techniques lead to a much quicker, objective estimation of 
parameters and also permits a sensitive analysis of the residuals. Copyright © 1996 Elsevier Science Ltd. 
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I N T R O D U C T I O N  

The success of  the model proposed by Havriliak and 
Negami to represent the dielectric data in primary or 

12 secondary relaxation zones is already well known ' . The 
flexibility provided by the five parameters of  this 
equation allows us to fit much of the experimental 
data. On the other hand, the Cole-Cole ~ and the 
Davidson-Cole  4 equations are particular cases of the 
Havri l iak-Negami ( H - N )  equation. Recently, Schon- 

5-7 hals and Schlosser proposed a physical interpretation 
of  the two exponents appearing in the H - N  equation. At 
about the same time that the H - N  equation was 
proposed, Huet proposed a representation of  the 
viscoelastic properties of  some bituminous asphalts by 
means of a biparabolic modelS: 

E* = E o +  Eoo-Eo (1) 
1 -t- 6(j~To)-k+(jco'ro) -h 

where E0 and Eoo represent the relaxed and unrelaxed 
moduli, respectively, ro is the relaxation time and 6, h, 
and k are parameters, where 1 > h > k > 0. The name of 
this model corresponds to the geometric shape of  the 
creep function t -~, whose Laplace transform is propor- 
tional to (j'wro) k- I  according to the following: 

A(v0/k-1 (2/ 

where A = r(1 - k ) / r g  - l ,  r is the gamma-function and 
&a is the Laplace transform. 

From the point of  view of impedance spectroscopy 
methodology 9, (jwT0) k is a constant phase element 
(CPE), which can be motivated by fractional differential 

* To w h o m  cor respondence  shou ld  be addressed  

calculus l°. This element was first mentioned (histori- 
cally) by Cole and Cole 3 as an essential ingredient of  the 
semiempirical model corresponding to the dielectric 
response of a material having a symmetric distribution 
of  relaxation times. Mechanically, a parabolic element 
contains the spring and dashpot elements as particular 
cases. From an electrical point of view, it contains a pure 
resistance or a capacitance as the limiting case. 

P~rez 11 modelled the viscoelastic response of a 
material by using a model based on the annihilation of 
defects in the matrix of  that material. The behaviour is 
controlled by two relaxation times and the limiting 
equation formally coincides with equation (1). Thus, in 
contrast to other models, the biparabolic model and the 
parameters contained within it, do have a physical 
meaning. 

It is our purpose in this present paper to discuss the 
compliance or permittivity counterpart of the model 
represented by equation (1) as a convenient starting 
point for analysing dielectric relaxation data. In this 
context, it is important to recognize that the biparabolic 
model has six parameters instead of the five used in the 
H - N  equation. We also propose an electrical circuit 
corresponding to the model and whose parameters 
represent the physical situation in the materials under 
study. Finally, a closed expression for the relaxation 
times is obtained, in contrast  with the approximations 
for long and short times given by Decroix and co- 

1"2 13 workers ' . The biparabolic model is well fitted to some 
of the experimental data. 

E X P E R I M E N T A L  

All of  the dielectric data reported in this paper have been 
obtained by means of a DEA 2970 dielectric analyser 
from TA Instruments. 
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THEORETICAL BACKGROUND 

We will use the symbol M* instead of E ~ for the modulus 
(viscoelastic as well as dielectric), so equation (1) 
becomes accordingly: 

M~ - Mo 
M* = Mo -) (3) 

1 + b(jc~,r()) ~+(j~ro) ~' 

Taking into account that permittivity (or compliance) is 
in the inverse of the modulus, we obtain from (3) the 
following: 

] 

fi)Q 1 +h(j~-'r0) ~+(j~crl)) ":l 
~" = - -  ~ (4) 

% + e., IO(j~%) *+(jccT-0) /'~ 

where (j~'r0) k= (,Cro) aexp( kjTr/2), and (jeer()) ~':: 
(ccr0) ~'exp(- kjrc/2). 

In order to describe the properties of the model it is 
convenient to make some rearrangements in equation (4) 
to obtain the following: 

E (q) <~) 1 q-b'(.la.'T0) 
J 

" t ,,/1~ 1 +N(J~'v/))h a+(-l~'7-") i 
5~ 

or alternatively: 

, Q) ( 

e = q ) -  [1 ÷,4'(jco'q')) h+(j~r,',) "l 6) 

where: 

k 1 
a' ~ ~ 1 ( ~ 0  h 

= and r{) = % \ (  ,. ) 

In this form, the formula presents close similarities with 
the classical expressions for the permittivity appearing in 
refs 1 3. 
• Splitting,into real and imaginary parts according to 

- •  - j ~ . w e h a v e :  

t! 

tan O 
(~t [ t x h k 7r - ~ r o )  sen~/<+sen~h 

kcos k+ cos h 
(8b) 

from which we can easily obtain the behaviour of the arc 
for low and high frequencies: 

lira 77 
= ~/< (9a) ~ . , ~ e c t a n ~ = t a n ~  ~l imw~ 

and 

lira =t ~ ' ~ 0 t a n 0 = - t a n ~ - h  - ~ l i m w ~ 0 = - ~ ,  (9b) 

In the same way for the characteristic retardation time, 
for which w~ = 1. we have: 

~k sen~h ] b'sen~ + 
• '=arc tan  ~ 

1 + ~' cos ~ k + cos 3- h +26' cos 7r/z(h - k) + b '2 

a n d  

(10a) 

t 7i- 71- 
h sen~-k + sen~h 

c / =  arctan - ~  " ~ - - ~  (10b) 
1 + , cos S k + c o s } - h )  

To calculate the b' and r 0 parameters, starting with a 
previous knowledge ofh and k, we can follow a very simple 
geometrical procedure. First, we write the following: 

e e~-h'(ja~r~)~ k + ( j a : < ) J '  ( l la)  
( 0  - -  ( 

and 

~ ' - e ~  = b,j. k + j  h ( l lb)  
~0 --  ~* ~%=1 

with i k =  exp(-kjTr/2), and i / ,=  exp(-hjTr/2), and 
representing the experimental data from the left-hand 

/ 
e = % + ( e 0 - % )  

l + 
k 7 r  , t , h  :7 77 2 [  t x 2 ( h  k) cos]K q t~'r0t cossh  + 2E(~r/)) h kcoss(h --/<) + 6' ~ccro) 

and 

II 

1 + 2  e'(ccr~)" acos~(h - l<)+(~cr, , )  c o s s n + e  ~,r0) COS~K] +~5 '2 wr~ + 

(7a) 

" t I\]1 7~ 0'(~'~',) 2¢' "sen~k + t~.'ro) sensn  
(7b) 

7? U /  t~2h  k 2 ] , + 2  c o s  k 

and consequently: 

tan~' - - -  

f t [ / \ h  71-/ 
e" _ a (~'7-0) -'j' ~sen~k. + bcr0) sen~n 

(8a) 
_ [ f \ 2 h  k ~- [ l x h  77 , ~ d [  t , ,h  7i- { 5 / 2 [  f \ 2 ( h  k} 

e' ~. 1 + (S'~cr0) cos~k + t~r0) cos~h + zo ~ r o )  -kCOS~7 (h - k) + tc~'r0) 
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side of equation (1 la), we can obtain 6' and 7- 6 from a 
plot such as that shown in Figure 1, where 7 represents 
vector j-h,  and ~" the vector from the extreme of vector 
r to the curve representing (c* - e~)/(e0 - e*). Similar 
results can easily be obtained in terms of the modulus 
representation. The e0, eo~, ~,  ~b, ~' ,  4~' and T 6 
parameters are represented in Figure 2. 

It is interesting to compare the exponent parameters, 
h and k, appearing in equation (4), with those of the 
H - N  equationl'2: 

e* = e ~ - F  eo - eo~ (0 < a ,  f l ~ l )  (12) 
[1 + (jw3-o)~] ;~ 

It is well known that the asymptotic behaviour gives the 
following: 

lim e" I 
a; ---, c~arctan-7---- 7 = aft 

-- ~ HN 
(13a) 

r sen~-h + r'sen~-k 

Im 8 ' -  8~o 

80 -- 8" 

Re e*- e~ 
r cos~h + r'cos~-k 

\ I x \ X', 

' 7 : j _  h 

-~ k r,=6,j- 

Figure 1 Geometrical calculation of 6 

and 

lim c" 
a~ ---* 0arctanzT--- 7 = - a  (13b) 

£ -- £oe HN 

and comparing these results with equations (9a) and (9b), 
we obtain: 

h = a = m  

k =aft  = n 

k 

h 

The parameters m and n have been related to the inter- 
and intramolecular correlations, respectively, i.e. with 
the long- and short-range molecular motions associated 
with the relaxation which equation (12) represents 5 7. 
Consequently, it is clear that the parameters h and k 
appearing in equation (4) can be interpreted in a similar 
way. On the other hand, according to a model proposed 
by P~rez 14'15, h and k characterize the distribution of 
activation and diffusion times, respectively, of a defect in 
a shear microdomain (a mobility island in Johari's 
terminology) 16 in the polymeric matrix. In this context, it 
is also interesting to note that the time dependence of 
these two effects is close to that proposed by Ngai and 
coworkers in the context of the coupling model 17'18. 
Summing up, the lower the values of h and k, then the 
larger will be the correlation between the species involved 
in the relaxation. We have shown this effect in recent 
research on the effect of the static strain on the dynamic 
mechanical properties of some polyethers 19, the larger 
the static strain, then the larger the parameters h and k, 
thus indicating a decrease in correlation in the molecular 
motion after applying the strain. 

ELECTRIC CIRCUIT 

In the former section we have seen a way to make a 
reasonable estimation of the parameters appearing in 
equation (4). However, in order to find the best set of 
parameters to fit the experimental data, it would be very 
convenient to start from all of the experimental points, 
instead of only from the asymptotic behaviour of the arc, 

Figure 2 

El'  

/ 
/ 

/ / / / 

__ 1 +8'c°s ~" k +c°s ~" h + 2G'c°s'~ (h-k)+5 '2  __ 

V 

~ ~  "~'= CO-1 

E;0 

Representation of the Cole-Cole diagram showing the more significant parameters 
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Figure 3 
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z¢ 

Schematic diagram of the equivalent lump electric circuit 

from which only a rough estimation can be obtained. 
Prior to this, we will synthesize the electric circuit 
corresponding to the biparabolic model, by following 
the methodology of impedance spectroscopy analysis. 
For this purpose we will start from the equation of the 
biparabolic model in terms of the dielectric modulus, i.e. 
from equation (3), but taking into account the following: 

M* 
z* - (15) 

j,;C0 

where Co is the capacity of  the empty cell; we therefore 
have the following expression for the equivalent 
impedance: 

M0 
Z *  - -  

jwC0 

1 (161 
]1 

j~C0 b I ~ Co% , - , I  h 
A M  F~-M C°T° ~(jw) + ~ M  -IJa:) 

In this way, we have the electric circuit shown in Figure 3, 
where we obtain a capacitance in series with three 
elements in parallel, where two of these are constant 
phase elements (CPEs) involving a fractional dependence 
on the frequency. By comparison of this electric scheme 
with the biparabolic equation, we have the following: 

C1 - C o c o  (17a)  

C2 - e°ex Co (17b) 
(% - ~ )  

and 

, % - -  ( x .  70]< 
Z l -  - ~ -  (5' (j~')~ I 

e; Co 
17c) 

'/1 
Z~ ' % - ~x % , .  ,/1 I 

%Co . 

which relate the parameters of  the biparabolic model to 
the passive elements in the scheme shown in Figure 3. 

R E T A R D A T I O N  SPECTRUM 

A convenient way to represent the relaxation properties 
of  a material  is to make use of  the distribution of the 
retardat ion times, which appears  in the linear theory of  
dielectric relaxation, by means of the following 
equation: 

I ~ Tg(T)d In v 
~ ~ + (g, - ~ )  (t8a) 

0 1 + jUT 

where: 

j o~ rg ( r )d  In = 1 (18b) T 

0 

and g(r)  is the retardation spectrum (somet imes/ ( r )  is 
used instead of rg(r)) .  

The spectrum can be understood as the number of 
molecular unities relaxing in a time interval between r and 
r + dr; the second equation (18b) is the normalization 
condition. 

Obviously, for a single retardation time, r = r 0, we 
have: 

, = ~ + _ _ g )  - c~ (19) 
1 + ja;r0 

with the result that the Debye equation is recovered. 
The formal expression for g(T) depends on the specific 

model used to represent the empirical data, but in general 
g(7) can be obtained by means of an inversion procedure 
according to refs 20 and 21: 

/(r) Tg(T) 

1 lim 
= - - ~  - - - ,  0lime*(-,,, + i /r)  I m d ( ~  + i/r)] 

27r 
(20) 

In our case, after several calculations, we obtained the 
following expression: 

".~(T' = 1 (~ S ,, 

h 

senhTr (~) +~'senMr 
2 T h - k T h T k 

( 2 1 )  

The distribution functions may, of  course, be obtained 
from the experimental measurements, but we think that 
it is most interesting to study the changes suffered by this 
function with respect to the h, k, ~5', and r~ parameters. 

Here, h and k are parameters which describe the low- 
and high-frequency behaviour, respectively. We can see in 
~)~ure 4a, that the maximum value of Tg(T) shifts along 
the abscissa and suffers a progressive diminution to give a 
minimum at k ~ 0.25, which is then followed by the 
development of a smaller maximum as k is increased 
further. There are two cases (k = 0, h = k = 0.8) in which 
we have a symmetric diagram corresponding to a Cole 
Cole expression. In Figure 4b we can see that the maximum 
of the distribution functions decreases and suffers shifts to 
the left when the h parameter is reduced. Again, when 
h k = 0.4, we obtain a symmetric Cole-Cole diagram. 

When the dependence of Tg(7) on In T/'r~ is studied, 
the shape distribution function is not altered by the 
variation of  the 7~ parameter .  Finally, we can see in 
Figure 4c the effect of  the ~ parameter  variat ion on the 
distribution of the relaxation times. In this case, the 
maximum decreases and shifts to the left when the ~5 ~ 
parameter  increases. Again, we can see that the 
symmetric Co le -Cole  diagram is obtained if ~5' = 0. 

APPLICATIONS 

In order to study the degree of validity of  the parameters 
(q), ~ ,  h, k, (5, (5', To, r~) obtained by employing the 
LEVM6 program, as opposed to parameters obtained 
when using the graphical techniques, we have studied the 
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p o l y m e r ,  n a m e l y  P D M P ,  w h i c h  we  h a v e  reported on  
recent ly  22, by us ing  b o t h  m e t h o d s .  In Figure 5 we can see 
the c o m p l e x  p lane  representat ion  o f  the  exper imenta l  
data  after the subtrac t ion  o f  the  c o n d u c t i v e  c o n t r i b u t i o n  
and  interfacial  re laxat ion  m e c h a n i s m s  caused  by the 
rough  contac t s  o f  the sample  wi th  the e lectrodes  23. 

In Table 1 we s h o w  the best  e s t imates  for the 
parameters  o b t a i n e d  f rom b o t h  m e t h o d s .  Th e  first 
c o l u m n  gives  the  parameters  reported prev ious ly ,  by 

°it I I "P" I 
3.2 3.6 4.0 4.4 

E' 

Figure 5 Complex plane representation of PDMP at 195°C: (O) 
experimental data; (+) estimated values 

Table 1 Parameters obtained for PDMP by using the graphical 
method and the LEVM6 program 

Parameter Graphical method LEVM6 program 

% 4.259 4.1854 
e~ 3.093 3.2175 
h 0.4950 0.7429 
k 0.1950 0.3693 
6 0.650 1.1594 
g 1.0633 1.5128 
7" 0 (s) 1.66 × 10 -5 4.66 x 10 -5 
7"5 (s) 8.56 x 10 -5 9.50 x 10 -5 

x.G(x) 
0,16 

0,14 

0,12 

0,10 

0,08 

0,06 , 

(b) :-' /' \ 
1 /' 

i / 

/ 

: i / 

i / 
0,04 / / 

(a) / 
/ 

/' 
0,02 

/ 

0,00 I 

-15,00 -10,00 -5,00 

! 

0,00 5,00 10,00 15,00 
In (x/x o) 

Figure 6 Distribution of relaxation times of PDMP obtained using: 
(a) the graphical method; (b) the LEVM6 program 

Figure 4 Diagrams showing the change in the distribution of the 
relaxation times for: (a) k = 0.00, 0.05, 0.10, 0.15, 0.20, 0.30 . . . . .  0.80 

10- s); (b) h = 0.40, 0.45, 0.50 . . . . .  0.90 (k = 0.4, (h = 0.8, 6 = 1, 7.9 = 5 
6 =  1, _rp= 10 ~s); (c) 6=0 .0 ,  0 . 2  . . . . .  2 .0  (h=0.8 ,  k=0 .4 ,  
7-0 = 1 0 - - s )  
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Table 2 H N parameters obtained for PDMP by using the LEVM6 
program, compared with those obtained from the biparabolic model 

Parameter H N model Biparabolic model 

% 4.1879 4.1854 
e~ 3.1879 3.2175 
(~ 0.6128 0.7429 
d 0.4707 0.2884 

t T0 (s) 9.44 x 10 5 9.5 x 10 5 

0.10 ............ 

O 

.o 

e.., 

E 
O 

Figure  7 

0.05 

0.00 
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0.0 
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O 

.0 20 
i I i 

3.0 4.0 5.0 

log f(Hz) 

! 
i 
l 

6.0 7.0 

Plots of the unaginary residuals against log frequency |or 
PDMP at 195°C: (O) the H-N model: (O) the biparabolic model 

using the graphica l  me thod  22, while the second column 
gives the es t imates  ob ta ined  when using the L E V M 6  
program.  

In Figure 6 we can see the d is t r ibu t ion  re laxat ion  t imes 
ob ta ined  by using bo th  o f  the col lect ions o f  pa ramete r s  
repor ted  in Table 1. The ~5' and  T[) pa ramete r s  are of  the 
same order  o f  magn i tude  in bo th  cases, whereas  the %, 
~ ,  h and k pa rame te r s  are very sensitive to the me thod  
employed.  The critical pa rame te r s  are % and c~,  because 
in o rder  to ob ta in  the k and h parameters ,  the first of  
these is employed ,  respectively.  

The relat ively different values of  the pa ramete r s  
ob ta ined  by bo th  me thods  change the shape of  the 
d i s t r ibu t ion  funct ion.  The analysis  o f  these funct ions 
indicates  aga in  that  the mos t  cri t ical  pa rame te r s  for this 
funct ion are h and k. 

W e  can  see f rom Figure 6 tha t  the d i s t r i b u t i o n  
func t ion  o b t a i n e d  when us ing the m e t h o d  which 
involves  the L E V M 6  p r o g r a m  has  a h igher  m a x i m u m  
than the corresponding function obta ined when using the 
graphical  method,  in accordance with our  expectat ions 
(Figure 4). 

This result  suggests that  the app l ica t ion  o f  the L E V M 6  
p r o g r a m  provides  several i m p o r t a n t  benefits in the 
analysis  o f  the dielectr ic coefficients o f  polymers ,  as 

opposed  to the or iginal  g raphica l  analysis;  one o f  these is 
the possibi l i ty  o f  quant i fy ing  errors  by means  o f  the 
analysis  o f  residuals,  as in the me thod  fol lowed by 
Havr i l iak  and Wat t s  24 which employed  a l ternat ive  
stat is t ical  methods .  

In this context ,  it is interest ing to compare  the results 
ob ta ined  by using the b ipa rabo l i c  mode l  with those 
found when using the H - N  equa t ion  (with the L E V M 6  
program) ,  because accord ing  to equa t ion  (14) we can 
establ ish a re la t ionship  between the pa ramete r s  of  bo th  
models  (see Table 2). A n  inspect ion o f  this table  reveals 
that  the mos t  sensitive pa rame te r s  are c~ = h, and 
~/3 = k. Al though ,  on formal  grounds ,  the asympto t i c  
behav iour  o f  bo th  models  is the same (equat ion  (14)), a 
different set o f  values can be ob ta ined  for each mode l  
after  fi t t ing has been carr ied  out.  Moreover ,  in spite o f  
the physical  mean ing  o f  the b ipa rabo l i c  model  in 
represent ing the exper imenta l  data ,  an analysis  o f  the 
residuals  o f  bo th  equat ions  in fitt ing the ob ta ined  values 
for P D M P  (Figure 7)  indicate  that  there are not  
significant advan tages  to be gained in using an extra  
parameter .  
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